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Abstract

In this study, a direct numerical simulation procedure for the cavitating flow noise is presented. The compressible
Navier–Stokes equations are written for the two-phase fluid, employing a density-based homogeneous equilibrium model
with a linearly-combined equation of state. To resolve the linear and non-linear waves in the cavitating flow, a sixth-order
compact central scheme is utilized with the selective spatial filtering technique. The present cavitation model and numerical
methods are validated for two benchmark problems: linear wave convection and acoustic saturation in a bubbly flow. The
cavitating flow noise is then computed for a 2D circular cylinder flow at Reynolds number based on a cylinder diameter,
200 and cavitation numbers, r ¼ 0:7–2. It is observed that, at cavitation numbers r ¼ 1 and 0.7, the cavitating flow and
noise characteristics are significantly changed by the shock waves due to the coherent collapse of the cloud cavitation in the
wake. To verify the present direct simulation and further analyze the sources of cavitation noise, an acoustic analogy based
on a classical theory of Fitzpatrik and Strasberg is derived. The far-field noise predicted by direct simulation is well com-
pared with that of acoustic analogy, and it also confirms the f �2 decaying rate in the spectrum, as predicted by the model
of Fitzpatrik and Strasberg with the Rayleigh–Plesset equation.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Cavitation bubbles formed by a breakdown of cavitation sheet or collapse of vortex cavities are often
responsible for the generation of loud noise and erosion damages, especially when they collapse coherently
[1]. There have been some experimental works by Reisman et al. [2] and Levy et al. [3] to measure the
cavitation noise with the sources identified. Cavitation experiments, especially for the cavitation noise, are,
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however, still quite difficult and numerical simulation is thereby important not only for the prediction but also
as a means to investigate the flow physics.

Research on prediction of cavitating flow noise has been conducted for years but mostly for the fundamen-
tal cases. For example, a pressure pulse generated by oscillation of single bubble has been studied theoretically
(and experimentally) by various researchers [4,5]. It is well-known that the acoustic pressure generated by the
bubble can be scaled with the volume acceleration, an estimate of which can be derived from the Rayleigh’s
analysis [4]. For cloud of cavitation bubbles, Wang and Brennen [6,7] studied numerically the noise generated
by the collapse of single cavitation cloud, by solving the Rayleigh–Plesset equation for the bubble dynamics
and estimating the radiated noise with an analogy, i.e. volume acceleration of the cloud. Colonius et al. [8] also
simulated the acoustic wave generation and propagation caused by wall oscillation in 1D bubbly cavitating
flow. They used the model of van Wijngaarden [9], in which the equations of continuum two-phase flow
are coupled with the micro-scale Rayleigh–Plesset equation.

The present study aims at direct numerical simulation of the cavitating flow noise. In order to simulate the
cavitating flow, noise generation and its interactions with a body, the governing equations, cavitation model,
and numerical methods should be carefully considered. For example, some classical interface tracking meth-
ods [10–12] cannot be used for cavitation noise simulation because the model cannot depict the detachment
and collapse of the cavitation bubble – a core physics of cavitation noise. The group of homogeneous equi-
librium models [13–20] could be the candidate because the models are capable of handling the bubble convec-
tion as well as the collapse. But most of these methods also are not suitable for the simulation of cavitation
noise because the compressiblity effects of liquid and/or gas phase are not taken into account and the system
of equations does not have the physical speed of sound as a characteristics.

In this regard, a density-based homogeneous equilibrium model [21] is employed. The governing equa-
tions are the compressible Navier–Stokes equations for the mixture fluid and the two-phase flow physics is
treated by a linearly-combined equation of state to simulate the cavitating flow and the cavitation noise as
well. The compressibility effect of liquid and gas phase are fully taken into account in the model. This
density-based cavitation model is therefore very suitable for direct simulation of the cavitation noise
because the governing equations are strictly in a hyperbolic system so that generation and propagation
of the waves can be resolved with the high-order numerical schemes used in computational aero-acoustics
(CAA).

Numerical schemes are also an important issue for direct simulation of cavitating flow noise. A numerical
scheme should be able to capture the steep gradients of flow variables at Mach numbers varying from very low
subsonic to supersonic, but for minimizing dispersion and dissipation errors, a high-order accuracy is also
required to resolve the acoustic waves. With this respect, a second-order upwind TVD scheme widely used
in simulation of cavitating flows [21] may be too dissipative. A high-order upwind scheme such as r ¼ 6
WENO scheme [22] can be a proper shock-capturing scheme for this class but the scheme is sensitive and
costly as well. Moreover, as for implementing the upwind scheme or the hybrid upwind/central scheme
[23], the characteristics (i.e. eigenvalues and eigenvectors) of the two-phase mixture equations are not easily
found for all cases.

In this study, a high-order central compact scheme with selective filtering technique is considered. The cen-
tral compact scheme [24] widely used in CAA is efficient and high-order accurate but cannot capture the steep
gradients such as shock waves because the scheme has no numerical diffusion. By the selective filtering based
on the compact spatial-filtering schemes [25], the numerical diffusion can be controlled such that the selective
filtering produces numerical diffusion only in the region where the steep gradients exist. This central compact
scheme with selective filtering is effective and easy to apply to the present governing equations, as compared to
other high-order upwind schemes [22,23].

In the present study, the cavitating flow noise from a 2D circular cylinder is computed by the proposed
direct numerical simulation procedure, and the source mechanism and characteristics of the cavitation noise
are examined for different cavitation numbers. The present article is organized as follows. In Section 2, a den-
sity-based homogeneous equilibrium model is introduced and the computational methods are presented in
Section 3. Two validations on the cavitation model and numerical methods are performed in Section 4,
and the computed results for the cavitation noise are presented in Section 5, with discussion on the noise gen-
eration mechanism and the sources. Finally, conclusions are summarized in Section 6.
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2. Governing equations

2.1. Density-based homogenous equilibrium model

In the present study, a homogenous equilibrium model proposed by Shin et al. [21] is employed. In the
homogenous medium, the mixture density q can be expressed by a linear combination of densities in the
liquid-phase ql and the gas-phase qg as
q ¼ ð1� aÞql þ aqg; ð1Þ
where a is a void fraction (gas volume fraction). The relation between the local void fraction a and the quality
(gas mass fraction) Y is given by
qð1� Y Þ ¼ ð1� aÞql and qY ¼ aqg: ð2Þ
The equations of state for a pure liquid [26] and an ideal gas are written as
p þ pc ¼ qlKðT þ T cÞ for Y ¼ 0 ð3Þ
p ¼ qgRT for Y ¼ 1; ð4Þ
where p and T are the static pressure and temperature, pc, T c, K are the pressure, temperature, and liquid con-
stant for the liquid state, and R is the gas constant. Using these two equations and the local equilibrium
assumption, the equation of state, Eq. (1) for a locally homogenous gas–liquid two-phase medium can be writ-
ten as
q ¼ pðp þ pcÞ
Kð1� Y ÞpðT þ T cÞ þ RY ðp þ pcÞT

: ð5Þ
The speed of sound for the isothermal condition at given mass fraction is derived as
c2 ¼ Y fRðp þ pcÞ � Kpg þ Kp

Y fRðp þ pcÞ
2 � Kp2g � qKRY ð1� Y ÞpcT c þ Kp2

� pðp þ pcÞ
q

; ð6Þ
by taking the mass fraction as a constant. The constants pc, K and T c for water in Eq. (5) were estimated as
1944.61 MPa, 472.27 J/kg K and 3837 K, respectively. The speed of sound estimated by Eq. (6) agrees well
with the Karplus’ experimental data at atmospheric pressure [21,27].

Based on the above mathematical modeling, which is under an isothermal condition and neglects the sur-
face tension by assuming high Weber number condition (We ¼ q0u2

0l=S � 1, where S is a surface tension and l

is a length scale), the 2D governing equations for the mixture mass, momentum, and gas-phase mass conser-
vation can be written as
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The stress tensor s and the mixture viscosity [28] l can be expressed by
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In cavitating flows, if local pressure drops under the vapor pressure then the liquid changes to vapor.
This phase change is modeled by generation of quality Y in the homogeneous equilibrium model. The
phase change is performed explicitly by Eqs. (1)–(5) with thermodynamic phase-interface condition after
every iteration. In the present density-based method, following values are estimated to check the phase
change:
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Fig. 1. (a) Schematic of phase change procedure, (b) p � 1=q diagram; Eq. (3)–(5) with progressive phase change.
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qv ¼pv=RT ;

Y min ¼
pvðpv þ pcÞ � qKpvðT þ T cÞ

qfRðpv þ pcÞT � KpvðT þ T cÞg
; ð10Þ
where pv is the vapor pressure, qv is the density of saturated gas, and Y min is the quality allowed at pv and given
q. If a local pressure is higher than the vapor pressure pv, the current local quality Y is always greater than
Y min. When the pressure is decreasing below pv, the phase change occurs and physically p ¼ pv, the local qual-
ity must be Y min. With this Y, pressure converges to pv spontaneously and cannot drop under pv. Additionally,
if the local density drops under qv, the cell can be regarded as the gas phase in whole and Y ¼ 1 can be substi-
tuted. The schematic of this phase change procedure is shown in Fig. 1a and the p � 1=q diagram for the pres-
ent cavitation model is plotted in Fig. 1b.

3. Computational methodology

3.1. Numerical methods

The governing equations, Eq. (7) are transformed into a generalized curvilinear coordinate and written in a
conservative vector form as
oQ
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where J is the Jacobian of the transformation, U and V are the contra-variant velocities.
To resolve the acoustic waves in two-phase flow with minimal dispersion and dissipation errors, a high-

order numerical scheme is employed in this work. Eq. (11) is spatially discretized in computational domain
with a central compact finite difference scheme [24]. The sixth-order compact finite difference scheme for
the first derivative is given by
1

3
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¼ 14
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� fiþ1 � fi�1
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4Dn
: ð12Þ
Let the compact finite difference operator with respect to n-direction be CnðÞ, the discretized form of Eq.
(11) can be written as
Qnþ1 ¼ Qn þ
Z tþDt

t
RHSn dt; ð13Þ
where
RHS ¼ �CnðE � EvÞ � CgðF � F vÞ

and the superscript n denotes a time level. The metrics are also computed by the compact finite difference to
retain the order of accuracy on the curvilinear coordinates [29]. The time integration in Eq. (13) is performed
by a four-stage Runge–Kutta method:
Qð0Þ ¼ Qn

QðkÞ ¼ Qn þ Dt=ð5� kÞ �RHSðk�1Þ k ¼ 1; 4

Qnþ1 ¼ Qð4Þ:
This explicit time marching is effective to resolve the small propagating compressibility effects such as acoustic
waves.

For handling out-going waves, an ‘Energy Transfer and Annihilating’ (ETA) boundary condition [30] is
applied at the far-field boundaries. The ETA boundary condition works within a buffer-zones, in which grids
are rapidly stretched. Grid spacing in the buffer-zone is expressed as
ðDxÞi ¼ xi � xi�1 ¼ CETA � ðDxÞi�1
where CETA is the stretching ratio. The value of CETA ¼ 2 and 10 grid points in the buffer-zone are suggested in
Ref. [30] for most of aero-acoustic problems. In this study, smoother and wider buffer-zone (CETA ¼ 1:4 and
20 grid points) are used to resolve not only acoustic waves but also any exited vortical wakes and bubbles.

3.2. Selective spatial filtering

A numerical instability could arise even in the smooth solution because the compact scheme has no diffu-
sion errors. Moreover, on the solution of cavitating two-phase flows, there are steep gradients including shock
waves. When a compact scheme is used for such region, the solution will be suffered by severe oscillations. In
order to suppress such numerical errors, a spatial filtering proposed by Gaitonde et al. [25] is applied in a selec-
tive manner.

The general formulation is given by
af
~f i�1 þ ~f i þ af

~f iþ1 ¼
XN=2

n¼0

an

2
ðfiþn þ fi�nÞ; ð14Þ
where N is the order of spatial filtering. The coefficients an for the Nth order can be found in Ref. [25]. The
high-order spatial filtering (e.g. tenth-order) is only dissipative for very high wave numbers. The tenth-order
filtering is ideal for smooth regions to suppress the high-frequency numerical errors with minimizing the dis-
sipation of physical waves. For the region where steep gradients exist, a more diffusive filtering is required to
suppress the oscillation errors. The second-order filtering with small value of af can provide enough numerical
diffusion to capture the steep gradients and shock waves. In direct simulation of the cavitation noise, a
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low-order filtering should be applied for numerical stability to the region where cavitation bubbles are gener-
ated and collapsed, while other regions must be dealt with the high-order filtering to resolve the acoustic wave
propagation.

In this study, the spatial filtering is used in a selective manner. We apply a tenth-order filtering with
af ¼ 0:49 (F10, hereafter) for smooth regions and a second-order filtering with af ¼ 0 (E2, hereafter) for
regions with steep gradients. The spectral response of those spatial filtering is shown in Fig. 2. As mentioned,
F10 filtering is dissipative only for the very high wave number (w > 2), while E2 filtering provides numerical
damping through out all wave number ranges. The filtering formulation, Eq. (14) is implicit and a local order-
change of filtering can be performed by locally modifying the coefficients of the matrix. In order to estimate a
smoothness of local solution, the following criterion is used:
D2 ¼ jfiþ1 � 2f i þ fi�1j
D2 P Csðfmax � fminÞ E2 filtering

D2 < Csðfmax � fminÞ F 10 filtering
;

� ð15Þ
where fmax and fmin are the global maximum and minimum values and Cs is an arbitrary constant. In our
study, we found that a value of Cs ¼ 0:1–0:2 works well. Actually, Cs controls the oscillation errors and res-
olutions of the high-frequency ‘physical’ waves. With small Cs, there are small oscillation errors near the steep
gradients but some high frequency waves are diffused. For large Cs, the case is vice versa. There are many
other ways to estimate the solution smoothness but this simple procedure is sufficient for now. A study for
finding a more optimized smoothness estimator will be pursued in the future study.

The resulting formulation of selective spatial filtering can be written as
ð1� bÞaf
~f i�1 þ ~f i þ ð1� bÞaf
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Fig. 2. Spectral response of spatial filtering, where R ¼ ~f =f and w ¼ kDx is a modified grid wave number.
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4. Benchmark problems

4.1. 1D wave equation

A purpose of the compact scheme with selective filtering is to resolve not only the steep gradients with min-
imal oscillation errors but also the smooth high frequency waves without loss of peak. To test the aforemen-
tioned numerical scheme, 1D wave equation
ou
ot
þ ou

ox
¼ 0
is considered with an initial condition, which includes a steep square wave and a smooth high-frequency
Gaussian wave. The domain is set to 0 6 x 6 3 and the domain edges are periodically connected. The initial
condition is given by
uð0; xÞ ¼
1:0 for 0:8 6 x 6 1:2

exp � x�2
0:05

� �2
� �

otherwise:

(

The 1D wave equation is solved by the sixth-order compact scheme with selective filtering (C6SF), r ¼ 3
WENO scheme [22] (WENO3), and upwind TVD scheme [31] (TVD) for comparison. The formal order of
accuracy of each scheme is estimated as hybrid second-order and sixth-order for C6SF, varied from third-
order to fifth-order for WENO3, and second-order for TVD scheme. The parameters used for the computa-
tions are Dx ¼ 0:01, CFL ¼ 0:5, and Cs ¼ 0:1 (for the selective filtering). The computed solutions at t ¼ 6 are
shown in Fig. 3 with the exact solution. For the square wave, there are small overshoots and undershoots
found in the C6SF solution but this error is unavoidable for this central scheme. With the E2 filtering, the
error is relatively small and also bounded. The WENO3 and TVD schemes do not produce oscillation errors
because they are the upwind schemes. On the other hand, a noticeable peak loss is observed in the WENO3
solution and the TVD solution is too dissipative in this case to resolve the high-frequency wave.

The effect of parameter Cs in selective spatial filtering and its grid dependancy are also investigated in
Fig. 4. As mentioned above, a large value of Csð¼ 0:2Þ allows more oscillation errors. With small value of
Csð¼ 0:05Þ, a square wave is well captured smoothly but the peak loss is observed for this high frequency
wave, like a trade-off. It is found that the value of 0.1 is most well balanced. There is no peak loss in the high
frequency wave and the oscillation errors near the square wave are also quite small. The grid dependancy of
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selective filtering is studied for Cs ¼ 0:1 on three different grids. As one can see in Fig. 4b, oscillations near the
discontinuity are bounded for all three cases. Note that Dx ¼ 0:02 is too coarse grid size for the Gaussian
wave. From these results it is shown that the preferred value of Cs ¼ 0:1 are almost independent of grid size
for acceptable range. Therefore, Cs ¼ 0:1 is used for all other computations in this study. Though the C6SF
scheme is not perfect yet, the solution is surely acceptable, considering its easiness in practical usages.

4.2. Acoustic saturation in a bubbly cavitating flow

In this section, we test our homogenous equilibrium model and C6SF scheme for a simple cavitating flow
with wall oscillations. In bubbly flows, acoustic waves generated by wall oscillations are steepened due to the
non-linear effects and the acoustic saturation is followed, i.e. the radiated acoustic energy is not increased as
the amplitude of wall oscillations is increased. This problem was studied by Colonius et al. [8], using the Ray-
leigh–Plesset equation. We consider a semi-infinite region bounded by a flat moving wall. The wall boundary
condition is that a fluid velocity normal to the wall is equal to the wall velocity. A sinusoidal motion of the
wall given by
uw ¼ A sinð2pðt=T ÞÞ;

where A is the amplitude and T is the period of wall oscillations. For bubbly flows, an initial void fraction is
set to a ¼ 0:01 and a one-dimensional form of Eq. (7) is solved with the equation of state, Eq. (5). A grid spac-
ing is 0:01k, where k is the acoustic wave length. A selective filtering is applied with Cs ¼ 0:1 and the smooth-
ness is estimated only by the pressure.

For the small amplitude of wall vibration velocity, the non-linear effects are absent and wall vibrations gen-
erate propagating disturbances. For large amplitude, compression waves are steepened into shock waves that
take a periodic train of N waves. The waves are then dissipated when compression waves are steepened into
shocks further, which is similar to the acoustic saturation phenomenon mentioned by Colonius et al. [8].

On the acoustic saturation, the maximum pressure along the distance from the wall can be obtained ana-
lytically from a weak shock analysis [32]. The maximum pressure is given by
pmax ¼

pA if x < pq0c3
o

2b0pAx

ppA

1þpA
xb0x

q0c3
0

� � if x >
3pq0c3

0

b0pAx
;

8>>><
>>>: ð17Þ
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where pA is the amplitude of pressure oscillations at the wall, q0 and c0 are the ambient density and speed of
sound, x is the frequency of oscillations, and b0 is a thermodynamic quantity given by
Fig.
b0 ¼ 1þ q0c0

oc
op

� �
0

:

The quantity b0 is a measure of non-linear steepening of the waves. The larger values of b0 imply that shocks
are formed with smaller amplitude of vibrations. For ideal gas, b0 ¼ ðcþ 1Þ=2. Colonius et al. calculated b0 for
bubbly fluids from the equations of bubble dynamics. In this study, the equation of state for the homogeneous
equilibrium model is directly used to find b0. To apply Eq. (17) to a two-phase flow, Eq. (6) is re-written as
c2 ¼ pðp þ pcÞ
ðp þ apcÞq

’ p
aq
: ð18Þ
This can be differentiated with respect p to obtain b0. For small a, it becomes
b0 ’
1

a
: ð19Þ
This value is the same as that obtained by Colonius et al. from the bubble dynamics but for an ‘isothermal’
process (polytropic index k ¼ 1). It means that the equation of state for the homogenous equilibrium model
well depicts the characteristics of two phase flow as bubble dynamics does.

Eq. (17) is compared in Fig. 5 with the computed pressure as a function of distance from the wall, for sev-
eral amplitudes of wall vibrations. The pressure is apparently well predicted. As predicted by Eq. (17), acoustic
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saturation occurs close to the wall as the amplitude is increased. At the highest amplitude, shocking of the
wave is immediate. These results are very much the same as those of Colonius et al. [8]. Through this bench-
mark problem, it is shown that the saturation phenomena in a bubbly cavitating flow are well predicted by the
homogeneous equilibrium model and the present C6SF scheme.

The grid convergence study is also performed for this non-linear problem with more significant change of
grid size (by a factor by four). For A ¼ 0:2 case, additional computations are made with four times finer and
coarser grids. Fig. 6 shows that the computed result with four times finer grid is almost identical to that for the
normal grid and only slightly smeared profile is observed for the four times coarser grid. It is clear that the grid
convergence of C6SF scheme has been achieved with Cs ¼ 0:1.

5. Results and discussion

5.1. Cavitating flow over a 2D circular cylinder

In this study, a two-phase, cavitating flow past a 2D circular cylinder is directly simulated with the density-
based homogeneous equilibrium model and C6SF numerical scheme. A bubbly flow over the cylinder with
ambient void fraction of a0 ¼ 0:01 is assumed for an isothermal state at T 0 ¼ 293 K. The inlet flow speed
is u0 ¼ 10 m=s and the Reynolds number of the flow is limited to ReD ¼ q0u0D=l0 ¼ 200, where D is the diam-
eter of a cylinder, to exclude any three-dimensional, turbulent nature of the flow. The cavitation number r is
defined by
r ¼ p0 � pv

0:5q0u2
0

; ð20Þ
where pv represents a vapor pressure. To adjust the cavitation number, ambient pressure is modified accord-
ingly and three test flow conditions, r ¼ 2; 1; and 0.7 are considered in the present study.

For direct computation of cavitating flow and noise, a computational domain for o-type grid is chosen with
outer boundary at r ¼ 100D to include several acoustic wavelengths. The grid points of 201� 301 are distrib-
uted in the circumferential and radial directions, respectively, with minimal normal grid spacing of 0:01D at
the wall. A selective filtering is applied with Cs ¼ 0:1 and the smoothness is estimated with the pressure gra-
dient only. For this cavitating flow, the grid cells with phase change are marked and filtered by E2 filtering
because the flow Mach number in such region often exceeds the sonic speed.

For each cavitation number, the instantaneous void fraction and vorticity fields around the cylinder are
presented in Fig. 7. For large cavitation number (r ¼ 2), cavitation bubbles are not generated because the sta-
tic pressure do not drop below the vapor pressure at ReD ¼ 200. Hence, the flow patterns, drag and lift coef-
ficients, and Strouhal number of the Karman vortex shedding frequency (St ¼ fu0=D ¼ 0:19) are very similar
to those for the single phase flow (e.g. St = 0.196 for a two-dimensional cylinder [33]). The time-averaged drag
coefficient, CD ¼ 1:08 is slightly smaller than the value for single phase flow, CD ¼ 1:33 [34,35]. For small cav-
itation numbers, however, the static pressure drops below the vapor pressure at the cylinder surface and also
with the vortex shedding. Therefore, vortex cavitation is generated via phase-change. At r ¼ 1, cavitation



Fig. 7. Two-phase flow over a 2D cylinder for cavitation numbers, r ¼ 2; 1; and 0.7; left: instantaneous void fraction, right: vorticity at a
same instant.
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bubbles are periodically generated by fluctuations of pressure due to the vortex shedding, though a mean pres-
sure itself does not reach the vapor pressure pv. At r ¼ 0:7, the mean pressure on the cylinder surface drops
below pv and cavitation bubbles are widely distributed with large values of void fraction but steady or fixed
cavity is not observed in the cylinder wake. Both cavitation number r ¼ 1 and 0.7, therefore, fall within the
case of cyclic cavity development in wake [36]. As one can see in Fig. 7, the cavitation bubble is detached from
the cylinder surface with vortex shedding and therefore unsteady distribution of the void fraction marginally
coincides with the vorticity field. The bubble cloud detached from the cylinder surface will finally collapse dur-
ing exposure to the surrounding higher pressure fluids. The shedding and collapse of the cavitation bubble
along with the vortex shedding were investigated experimentally by Saito and Sato [37].

To examine the unsteady flow characteristics, time histories of drag and lift coefficients are plotted in Fig. 8.
In the present computation, shock waves or impacts generated by the collapse of cavitation bubbles can be
clearly identified with r ¼ 1. For r ¼ 1 and 0.7 (cavitating flows), drag and lift coefficient profiles look quite
different from that of r ¼ 2 (non-cavitating flow). Especially at r ¼ 1, drag and lift forces are severely affected
by the shock waves and so the time evolution of the lift coefficient clearly exhibits a pattern of N-waves. As
cavitation number decreases from 1 to 0.7, generation and collapse of the cavitation bubble become less peri-
odic due to the increased volume of cavitation bubbles. It is also interesting to note that the formation of cav-
itation bubbles on the cylinder surface changes the vortex shedding structure as well as the frequency. The
larger cavity delays the vortex shedding and makes the vortex shedding period longer. The Strouhal number
for the vortex shedding becomes St ¼ 0:16 for r ¼ 1 and St ’ 0:13 for r ¼ 0:7, as compared to the non-cav-
itating case (St ¼ 0:19 for r ¼ 2). In the present computation, a very low frequency phenomenon at St � 0:03
is also observed in Fig. 8 at r ¼ 0:7. The decrease of shedding frequency with decreasing cavitation number is
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also investigated and reported by previous researchers [38,39] for a circular cylinder with cyclic cavity devel-
opment in wake. At further lower cavitation number, however, it is reported that the shedding frequency
increased with the development of fixed, steady cavity in wake [36,38]. While Ausoni et al. recently observed
that the frequency of Karman vortex shedding increased with decreasing cavitation number in the early stage
of cavitation inception for a blunt-trailing edge hydrofoil [40]. The reason of this frequency increasing is also
supposed to be the presence of early developed fixed cavity due to the geometric shape.

Before proceeding to further study, it is useful to investigate the assessment of grid resolution. The case of
r ¼ 1 is computed on the grid of finer resolution, 401� 601 and the results are compared in Fig. 9 with the
normal grid case (201� 301). Fig. 9a shows time history of drag and lift coefficients for fine and normal grids.
There is no significant difference between two results. In Fig. 9b, instantaneous pressure fields are also com-
pared. The overall structure of pressure field, including cavity region and shock waves are resolved almost
identically with the fine and normal grids, except that the detailed structures are resolved more sharply with
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the fine grid. For the quantitative comparison, the pressure profile is extracted along x=D ¼ 3 line which
crosses the pressure discontinuities, and it is presented in Fig. 9c for both fine and normal grids. As one
can see in the figure, discontinuous pressure profiles resolved on both grids are in close agreement.

5.2. Cavitating flow noise

A rapid volume change of cavity or collapse of cavitation bubbles emits shock waves. This pressure pulse is
generally known as a main source of the cavitation noise. In the present direct simulation, the generation of
pressure pulse and its propagation to the far-field are fully resolved with C6SF numerical scheme. The fluc-
tuating pressure fields ðp0 ¼ �p � pÞ generated by the two-phase flow over the 2D cylinder are presented in
Fig. 10. A typical cylinder dipole tone is observed in Fig. 10a for r ¼ 2. This dipole tone is caused by the pres-
sure fluctuations at either side of the cylinder top and bottom due to the von Karman vortex shedding and
looks very much the same as in aero-acoustics of the laminar flow past a circular cylinder. For smaller cav-



Fig. 10. Pressure fluctuation fields: (a) r ¼ 2, (b) r ¼ 1, and (c) r ¼ 0:7; normalized by q0u2
0.
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itation numbers (r ¼ 1 and 0.7), however, pressure fluctuation fields look quite different. The monopole-like
pressure waves observed in Fig. 10b and c are the propagating shock waves generated by the collapse of cav-
itation bubbles. These shock waves are generated at the point, where the bubble is broken-off and collapsed.
The high-frequency waves clearly identified in Fig. 10b may also be generated via interactions of the shock
waves with the cavity cloud in the vortex train downstream of the wake.

Fig. 11 shows the time history of pressure fluctuations monitored at r ¼ 70D directly above the cylinder for
each case. As expected, a sinusoidal acoustic wave is observed for r ¼ 2 (non-cavitating flow), while cavitating
flows (r ¼ 1 and 0.7) generate shock waves, which are typical for the collapse of cavitation bubbles [6,7]. At
r ¼ 1, two peaks are observed for one period, due to the break-off and collapse of the bubbles by alternating
vortex shedding. The signal of r ¼ 0:7 is much less periodic because a low frequency wave is imposed. For
cavitating flows, shock waves generated by the collapse of cavitation bubble are regarded as the noise source,
which is stronger than the pressure fluctuations by Karman vortex shedding.

The power spectral densities (PSD) of the pressure fluctuations monitored at r ¼ 70D for three cases are
presented in Fig. 12. At r ¼ 2, noise is purely from the surface dipole and has a spectral peak at the vortex
shedding frequency (St ¼ 0:19). For r ¼ 1, however, the dominant noise is the monopole-like shock waves
generated by breakdown and collapse of the alternating cavitation bubble and the peak is observed at the
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double of the vortex shedding frequency (St ¼ 0:32). As mentioned, the Strouhal frequency decreases, as
the cavitation number decreases (e.g. St ¼ 0:19; 0:16 and 0.13 for r ¼ 2; 1; and 0.7) because the vortex shed-
ding is delayed due to the formation of cavitation bubble. For r ¼ 0:7, the peaks are made not only by the
alternate collapse of the cavitation bubble (at St ¼ 0:26) but also by the low frequency behavior of the
elongated vortex cavity (at St � 0:03). The breakdown and collapse of the cavitation bubble with vortex
shedding are also affected by this low frequency behavior, which makes the noise spectrum broadened.
It is also found that the noise level for the cavitating flow case is much higher than that for the non-cav-
itating case.

5.3. Shock wave generation by collapsing clouds

A transient process of shock wave generation during the collapse of cavitation bubble cloud is closely exam-
ined to identify its coherences with the radiated cavitation noise. A time evolution of the pressure fluctuations
at r ¼ 1 is presented in Fig. 13 for a half period along with the void fraction. In early stage, the sheet cavi-
tation at the upper cylinder surface is breaking-off by the Karman vortex shedding and cloud cavitations
are formed. The front part of cavity cloud remains on the cylinder surface, while the rear part(sub-cloud of
forth) convects downstream with the shed vortex. As soon as the pressure is recovered at the upper cylinder
surface, the front bubble cloud collapses (indicated in figure as C1) and emits a shock wave (S1). The sub-
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cloud exposed to the surrounding high-pressure fluids is then shrunk by an interaction with the emitted shock
wave (S1) and collapsed afterwards in the wake (C2). As a result, a stronger shock wave (S2) is generated in
the wake and propagates as a monopole sound pulse. A slight rebounding of the collapsed cloud is also
observed in the last snapshot. The same collapse and shock wave generation processes are repeated at the
opposite side during the rest of the period. The cavitation noise generation mechanism for r ¼ 0:7 is basically
the same. The elongated bubble cloud is collapsed and emits a shock wave at the upper and lower sides alter-
natively at the vortex shedding frequency, while the formation and collapse of the sub-cloud with vortex shed-
ding is now affected by the low frequency behavior of the main vortex cavity (at St � 0:03), which is caused by
the instability of the large cavitation bubble.

The computed results are found consistent with the previous work by Reisman et al. [2], who experi-
mentally investigated the cloud cavitation noise generated by the collapse of cloud for an oscillating
hydrofoil. In their experiment, the cloud cavitation is formed via breakdown of sheet cavitation over
the hydrofoil with oscillation of angle of attack. They pointed out that the collapse of separated ‘sub-
cloud’ is the main source of strong noise generation and erosion damages because the sub-cloud is some-
times very coherent and may persist well after the remains of the sheet cavity have dispersed. In the pres-
ent direct simulation, the sheet cavitation over the cylinder surface is broken-off with the Karman vortex
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5.4. Comparison with theory

In this section, an acoustic analogy is derived for the cavitation noise and the predicted far-field noise is
compared with that of direct simulation. The source of cavitation noise is the pressure pulse (or shock wave)
generated by the collapse of cavitation bubble. Theoretically, a monopole noise generated by the collapse of
single spherical bubble can be estimated by the following formulation [41,42];
p0 ¼ ql

4pr
d2V B

dt2
; ð21Þ
where r is the distance between the bubble and the measurement and V B is the bubble volume. As one can see
in Eq. (21), the volume acceleration is the source of monopole noise.

For clouds of cavitation bubble in arbitrary shape (not spherical or cylindrical), the volume of the vapor
bubble can be calculated by integrating the void fraction;
V B ¼
Z

V
adV ; ð22Þ
and an acoustic analogy for the cavitating flow noise can be written as
4pp0 ¼
Z

V

q0

r
d2a
dt2

	 

ret

dV|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

þ
Z

S

cos h
c0r

dp
dt

	 

ret

dS|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

ð23Þ
where ‘ret’ denotes a value estimated at retarded time, t � r=c0. Term I is the modeled source for the monopole
noise, which would be generated by the collapse of bubble clouds, and the surface integral, term II is the dipole
source exerted by the pressure fluctuations over the body surface. A quadruple noise by turbulence fluctua-
tions is excluded in the present study. The modeled cavitation monopole source (term I) is based on a classical
theory, Eqs. (21) and (23) converges to Eq. (21) for a single bubble. In the frequency domain, Eq. (23) is writ-
ten as
4pp̂0 ¼
Z

V

eikr

r
q0x

2âdV þ
Z

S

ehikr

r
ik cos hp̂ dS; ð24Þ
and its two-dimensional form is expressed as
4ip̂0 ¼
Z

V
q0x

2âH ð2Þ0 ðkrÞdV þ
Z

S
cos h � kp̂H ð2Þ1 ðkrÞdS; ð25Þ
where H is the Hankel function and k ¼ x=c0.
Eq. (25) is now used to predict the cavitating flow noise from a 2D circular cylinder. The time-depen-

dent surface pressure fluctuations and void fraction fields are obtained from the computational results pre-
sented in Section 5.1. The power spectral densities of the acoustic pressure predicted by Eq. (25) are now
compared with that of direct computation for r ¼ 1 and 0.7. As one can see in Fig. 14, they are in excel-
lent agreement, showing that the overall shape of the spectrum is very much the same. For r ¼ 1, the first
and second peak levels are very well met. A little discrepancy observed in r ¼ 0:7 case may be caused by
the near-field, non-linear effects due to the larger void fraction. The high-frequency cut-offs in direct sim-
ulation are just caused by the lack of grid resolution at the far-field. From this comparison, it is convinced
that the present cavitation model and numerical methods consistently resolve the physics of cavitation
noise.

For the present cavitating flow over the blunt body, the radiated noise is composed of monopole by cav-
itation bubble collapsing and surface dipole as discussed. With the aid of above acoustic analogy, the radi-
ated noise can be evaluated by quantifying the importance of each term. Fig. 15 shows the monopole and
dipole parts separately for r ¼ 1 and 0.7. As investigated, a dipole peak is at the vortex shedding frequency,
while the monopole peak is twice the vortex shedding frequency. In overall, the bubble collapsing yields the
noise level higher than the surface dipole. For transient cavitating flow (r ¼ 1), bubble collapsing occurs
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near the body and surface pressure fluctuations are affected by the collapsing. In this case, the surface dipole
noise is amplified by the impact force exerted by the bubble collapsing and the noise can be considered as
an ‘impact dipole’ noise. For a certain cavitating flow, this impact dipole noise caused by the bubble col-
lapsing near the body could be the dominant noise source because a strong correlation is observed between
the body force (lift force) and the radiated noise [3]. At r ¼ 0:7, the vortex shedding and bubble collapsing
occur farther downstream as shown in Fig. 7, and the surface dipole level is much lower than the cavitation
monopole. In such case, the bubble collapsing can be considered the dominant noise source. In addition, it
is known that the high-frequency part of the cavitation noise decays as f �n, where n ¼ 0:5–2 [41–43]. In
Fig. 15, one can clearly notice that the predicted cavitation monopole noise closely follows the f �2 decaying,
as predicted by the model of Fitzpatrik and Strasberg [4] with the Rayleigh–Plesset equation. The spectrum
of noise radiated by the single bubble cloud predicted by Wang and Brennen [6,7] also exhibits a f �2

decaying.
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6. Conclusions

A direct numerical simulation procedure for the cavitating flow noise is presented. As demonstrated in two
benchmark problems, the present computational methodology is valid and effective to treat the macro-scale
dynamics of the two-phase cavitating flow. Especially, the compressible Navier–Stokes equations for the mix-
ture fluid allow to use a high-order numerical scheme (with selective filtering), to resolve not only the transient
characteristics of the complex two-phase flow physics (e.g. formation, detachment, convection, and collapse of
the cavitation bubble clouds) but also the generation and propagation of the linear and non-linear waves in the
entire field. The direct numerical simulation of the cavitating flows noise from a 2D circular cylinder shows
that, at cavitation numbers r ¼ 1 and 0.7, the shock waves generated by the coherent collapse of cloud cav-
itation in the wake significantly change the aerodynamics and aerodynamic noise, including alteration of the
Karman vortex shedding frequency. The present direct simulation results are verified by an acoustic analogy
composed of monopole and dipole sources. The monopole source is modeled for the collapse of cavitation
bubble cloud, based on a classical theory of Fitzpatrik and Strasberg and the dipole source is for the pressure
fluctuations along the cylinder surface by shock wave reflections. The far-field noise predicted by direct sim-
ulation is in excellent agreement with that of acoustic analogy, and it also confirms the f �2 decaying rate in the
spectrum, as predicted by the model of Fitzpatrik and Strasberg with the Rayleigh–Plesset equation.
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